In a new study, MIT researchers have developed nanoparticles that can deliver the CRISPR genome-editing system and specifically modify genes in mice. The team used nanoparticles to carry the CRISPR components, eliminating the need to use viruses for delivery. “What’s really exciting here is that we’ve shown you can make a nanoparticle that can be used to permanently and specifically edit…
A team of scientists from the Broad Institute of MIT and Harvard, the McGovern Institute for Brain Research at MIT, the Institute for Medical Engineering & Science at MIT, and the Wyss Institute for Biologically Inspired Engineering at Harvard University has adapted a CRISPR protein that targets RNA (rather than DNA) as a rapid, inexpensive, highly sensitive diagnostic tool with the potential…
CRISPR/Cas9, a powerful genome editing tool, is showing promise for efficient correction of disease-causing mutations. For the first time, researchers from the Perelman School of Medicine at the University of Pennsylvania have developed a dual gene therapy approach to deliver key components of a CRISPR/Cas9-mediated gene targeting system to mice to treat hemophilia B. This disorder is also called factor…
Blind animals have had their vision partially restored using a revolutionary DNA editing technique that scientists say could in future be applied to a range of devastating genetic diseases. The study is the first to demonstrate that a gene editing tool, called Crispr, can be used to replace faulty genes with working versions in the cells of adults – in…