A team of scientists from the Broad Institute of MIT and Harvard, the McGovern Institute for Brain Research at MIT, the Institute for Medical Engineering & Science at MIT, and the Wyss Institute for Biologically Inspired Engineering at Harvard University has adapted a CRISPR protein that targets RNA (rather than DNA) as a rapid, inexpensive, highly sensitive diagnostic tool with the potential for a transformative effect on research and global public health.
In a study published today in Science, Broad institute members Feng Zhang, Jim Collins, Deb Hung, Aviv Regev, and Pardis Sabeti describe how this RNA-targeting CRISPR enzyme was harnessed as a highly sensitive detector – able to indicate the presence of as little as a single molecule of a target RNA or DNA molecule. Co-first authors Omar Abudayyeh and Jonathan Gootenberg, graduate students at MIT and Harvard, respectively, dubbed the new tool SHERLOCK (Specific High-sensitivity Enzymatic Reporter unLOCKing); this technology could one day be used to respond to viral and bacterial outbreaks, monitor antibiotic resistance, and detect cancer.