Taxonomic review of the New World tamarins (Primates: Callitrichidae)

ANTHONY B. RYLANDS1,*, ECKHARD W. HEYMANN2, JESSICA LYNCH ALFARO3, JANET C. BUCKNER4, CHRISTIAN ROOS5, CHRISTIAN MATAUSCHEK2, JEAN P. BOUBLI6, RICARDO SAMPAIO7 and RUSSELL A. MITTERMEIER1

1Conservation International, Arlington, VA, USA
2Department of Behavioral Ecology and Sociobiology, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
3Institute for Society and Genetics and Department of Anthropology, University of California, Los Angeles, CA, USA
4Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
5Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
6School of Environment and Life Sciences, University of Salford, Manchester, UK
7National Research Center for Carnivore Conservation (CENAP/ICMBio), Atibaia, SP, Brazil

Received 2 June 2015; revised 17 November 2015; accepted for publication 26 November 2015

Twelve generic names have been ascribed to the New World tamarins but all are currently placed in just one: Saguinus Hoffmannsegg, 1807. Based on geographical distributions, morphology, and pelage patterns and coloration, they have been divided into six species groups: (1) nigricollis, (2) mystax, (3) midas, (4) inustus, (5) bicolor and (6) oedipus. Molecular phylogenetic studies have validated five of these groups; each are distinct clades. Saguinus inustus is embedded in the mystax group. Genetic studies show that tamarins are sister to all other callitrichids, diverging 15/13 Ma. The small-bodied nigricollis group diverged from the remaining, larger tamarins 11/8 Ma, and the mystax group diverged 7–6 Ma; these radiations are older than those of the marmosets (Callithrix, Cebuella, Mico), which began to diversify 6–5 Ma. The oedipus group diverged from the midas and bicolor groups 5–4 Ma. We review recent taxonomic changes and summarize the history of the generic names. Taking into account the Late Miocene divergence time (11–8 Ma) between the large- and small-bodied tamarin lineages, the size of the nigricollis group species when compared with other tamarins, and the sympatry of the nigricollis group species with the larger mystax group species, we argue that the nigricollis group be recognized as a distinct genus: Leontocebus Wagner, 1839.

Table 1. The taxonomy of the tamarins

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>White-mouthed or nigricollis group</td>
<td>White-mouthed or nigricollis group</td>
</tr>
<tr>
<td>Saguinus fuscicollis fuscus (Lesson, 1840)</td>
<td>Saguinus fuscus</td>
</tr>
<tr>
<td>Saguinus nigricollis nigricollis (Spix, 1823)</td>
<td>Saguinus nigricollis nigricollis</td>
</tr>
<tr>
<td>Saguinus nigricollis graellisi (Jiménez de la Espada, 1870)</td>
<td>Saguinus nigricollis graellisi</td>
</tr>
<tr>
<td>Saguinus nigricollis hernandezii Hershkovitz, 1982</td>
<td>Saguinus nigricollis hernandezii</td>
</tr>
<tr>
<td>Saguinus fuscicollis leucogenys (Gray, 1866)</td>
<td>Saguinus leucogenys</td>
</tr>
<tr>
<td>Saguinus fuscicollis illigeri (Pucheran, 1845)</td>
<td>Saguinus illigeri</td>
</tr>
<tr>
<td>Saguinus fuscicollis lagonotus (Jiménez de la Espada, 1870)</td>
<td>Saguinus lagonotus</td>
</tr>
<tr>
<td>Saguinus fuscicollis tripartitus (Milne-Edwards, 1878)</td>
<td>Saguinus tripartitus</td>
</tr>
<tr>
<td>Saguinus fuscicollis fuscicollis (Spix, 1823)</td>
<td>Saguinus fuscicollis fuscicollis</td>
</tr>
<tr>
<td>Saguinus fuscicollis avilapiresi Hershkovitz, 1966</td>
<td>Saguinus fuscicollis avilapiresi</td>
</tr>
<tr>
<td>Saguinus fuscicollis primitivus Hershkovitz, 1977</td>
<td>Saguinus fuscicollis primitivus</td>
</tr>
<tr>
<td>Saguinus fuscicollis nigrifrons (I. Geoffroy, 1850)</td>
<td>Saguinus nigrifrons</td>
</tr>
<tr>
<td>Saguinus fuscicollis cruzlimai Hershkovitz, 1966</td>
<td>Saguinus cruzlimai*</td>
</tr>
<tr>
<td>Saguinus fuscicollis weddelli (Deville, 1849)</td>
<td>Saguinus weddelli weddelli</td>
</tr>
<tr>
<td>Saguinus fuscicollis melanoleucus (Miranda Ribeiro, 1912)</td>
<td>Saguinus weddelli melanoleucus</td>
</tr>
<tr>
<td>Saguinus fuscicollis acensis (de Carvalho, 1957)†</td>
<td></td>
</tr>
<tr>
<td>Saguinus fuscicollis crandalli Hershkovitz, 1966</td>
<td>Saguinus weddelli crandalli</td>
</tr>
<tr>
<td>Moustached or mystax group</td>
<td>Moustached or mystax group</td>
</tr>
<tr>
<td>Saguinus mystax mystax (Spix, 1823)</td>
<td>Saguinus mystax mystax</td>
</tr>
<tr>
<td>Saguinus mystax pileatus (I. Geoffroy & Deville, 1848)</td>
<td>Saguinus mystax pileatus</td>
</tr>
<tr>
<td>Saguinus mystax pluto (Lönnberg, 1926)</td>
<td>Saguinus mystax pluto</td>
</tr>
<tr>
<td>Saguinus labiatus labiatus (E. Geoffroy, 1812)</td>
<td>Saguinus labiatus labiatus</td>
</tr>
<tr>
<td>Saguinus labiatus thomasi (Goeldi, 1907)</td>
<td>Saguinus labiatus thomasi</td>
</tr>
<tr>
<td>Saguinus imperator imperator (Goeldi, 1907)</td>
<td>Saguinus imperator imperator</td>
</tr>
<tr>
<td>Saguinus imperator subgrisescens (Lönnberg, 1940)</td>
<td>Saguinus imperator subgrisescens</td>
</tr>
<tr>
<td>Mottled-face tamarin or inustus group</td>
<td>Saguinus inustus</td>
</tr>
<tr>
<td>Saguinus inustus (Schwarz, 1951)</td>
<td>Saguinus inustus</td>
</tr>
<tr>
<td>Midas tamarin or midas group</td>
<td>Midas tamarin or midas group</td>
</tr>
<tr>
<td>Saguinus midas midas (Linnaeus, 1758)</td>
<td>Saguinus midas</td>
</tr>
<tr>
<td>Saguinus midas niger (E. Geoffroy, 1803)</td>
<td>Saguinus niger</td>
</tr>
<tr>
<td>Brazilian bare-face tamarins or bicolor group</td>
<td>Brazilian bare-face tamarins or bicolor group</td>
</tr>
<tr>
<td>Saguinus bicolor bicolor (Spix, 1823)</td>
<td>Saguinus bicolor</td>
</tr>
<tr>
<td>Saguinus bicolor martinsi (Thomas, 1912)</td>
<td>Saguinus martinsi martinsi</td>
</tr>
<tr>
<td>Saguinus bicolor ochraceus Hershkovitz, 1966</td>
<td>Saguinus martinsi ochraceus</td>
</tr>
<tr>
<td>Colombian and Panamanian bare-face tamarins or oedipus group</td>
<td>Colombian and Panamanian bare-face tamarins or oedipus group</td>
</tr>
<tr>
<td>Saguinus oedipus oedipus (Linnaeus, 1758)</td>
<td>Saguinus oedipus</td>
</tr>
<tr>
<td>Saguinus oedipus goffroyi (Pucheran, 1845)</td>
<td>Saguinus goffroyi</td>
</tr>
<tr>
<td>Saguinus leucopus (Günther, 1877)</td>
<td>Saguinus leucopus</td>
</tr>
</tbody>
</table>

Arrangements proposed by Hershkovitz (1977, 1979, 1982) and Rylands & Mittermeier (2013), the latter with three modifications: (1) inclusion of *Saguinus inustus* in the moustached or mystax group as indicated by molecular data (Jacobs Cropp et al., 1999; Boubli et al., 2015; Buckner et al., 2015); (2) the addition of *Saguinus ursulus* Hoffmannsegg, 1807, revalidated by Gregorin & de Vivo (2013); and (3) the elevation of *S. fuscicollis cruzlimai* to a species by Sampaio et al. (2015).

*Raised to species level by Sampaio et al. (2015).
†Found to be a hybrid *S. f. fuscicollis* × *S. f. melanoleucus* (Peres, 1993a; Peres et al., 1996).
‡Revalidated by Groves (2001).
§Revalidated by Gregorin & de Vivo (2013).
(Peres, 1993a; Peres, Patton & da Silva, 1996); (2) the recognition of *S. labiatus rufiventris* (Gray, 1843) by Groves (2001, 2005); (3) the description of a new subspecies, *S. fuscicolis mura* Röhe et al., 2009; and (4) the splitting of Hershkovitz’s *S. midas nigricollis* into *S. nigricollis* (É. Geoffroy Saint-Hilaire, 1803) and *S. uruslus* Hoffmannsegg, 1807, by Gregorin & de Vivo (2013). The principal changes in the taxonomy of this genus have arisen from the trend to adopt the Phylogenetic Species Concept (Cracraft, 1983; Groves, 2001, 2004, 2012, 2014; Rylands & Mittermeier, 2014); a number of Hershkovitz’s subspecies are now considered species, and the tally of tamarins currently stands at 22 species and 35 species and subspecies (Groves, 2001, 2005; Matauschek, Roos & Heymann, 2011; Rylands, Mittermeier & Silva-Júnior, 2012; Gregorin & de Vivo, 2013; Rylands & Mittermeier, 2008, 2013; Sampaio et al., 2015).

Besides the tamarins, the Callitrichidae comprises the pygmy marmosets (*Cebuella*), the Amazonian marmosets (*Mico*), Goeldi’s monkey (*Callimico*), the Atlantic forest marmosets (*Callithrix*) and the Atlantic forest lion tamarins (*Leontopithecus*) (Rylands et al., 2012; Schneider et al., 2012; Garbino, 2015; Schneider & Sampaio, 2015). The molecular genetic analysis of Perelman et al. (2011) indicated that the Callitrichidae diverged from the Aotidae (night monkeys) and Cebidae (squirrel monkeys and capuchin monkeys) about 20–19 million years ago (Ma) (see also Goodman et al., 1998; Ray et al., 2005; Schneider & Sampaio, 2015). The tamarins split early in the callitrichid radiation (Canavez et al., 1999; review by Osterholz, Walter & Roos, 2009), and are sister to all other extant callitrichids, with a Middle Miocene divergence estimated at 15–13 Ma (Matauschek et al., 2011; Perelman et al., 2011; Perez, Klaczo & dos Reis, 2012; Schneider et al., 2012; Buckner et al., 2015; Schneider & Sampaio, 2015).

Based on morphology, pelage and geographical distribution, Hershkovitz (1977: 604) separated his ten tamarin species into the following groups: (1) the white-mouthed tamarin or *nigricolis* group (*S. nigricolis* and *S. fuscicolis*); (2) the moustached tamarin or *mystax* group (*S. mystax, S. labiatus* and *S. imператор*); (3) the Midas tamarin group (*S. midas*); (4) the motled-face tamarin group (*S. inustus*); (5) the Brazilian bare-face tamarin group (*S. bicolor*); and (6) the Colombian and Panamanian bare-face tamarin group (*S. leucopus* and *S. oedipus*) (Table 1, Figs 1–3). For shorthand, we refer to them as (1) the *nigricolis* group, (2) the *mystax* group, (3) the *midas* group, (4) the *inustus* group, (5) the *bicolor* group and (6) the *oedipus* group.

Molecular genetic studies have confirmed five of these six groups as distinct clades. The exception is *inustus*, which occurs north of the Rio Solimões in Brazil and Colombia, and, having a bare-face, Hershkovitz (1977: 732) supposed that it came from the same stock that could have given rise to the *S. oedipus* group. The results of the molecular genetic analyses of Jacobs Cropp, Larson & Cheverud (1999) and Boublí et al. (2015) who used mtDNA, Buckner et al. (2015) who used both mtDNA and nuclear sequences, and da Cunha et al. (2011) who analysed DNA sequences of five nuclear genes with *Alu* insertions, have indicated however, that it may be a sister to *S. mystax, S. labiatus* or *S. mystax + S. labiatus*, and as such is a well-embedded member of the *mystax* group.

In this article, we review changes to the taxonomy of the tamarins (species and subspecies) since Hershkovitz’s synthesis (1977, 1979, 1982), and provide a summary of the history of the tamarin genus names. Taking into account new information from molecular phylogenetic studies concerning the ages of the tamarin clades – clades that are coincident with the species groups mentioned above – we suggest a taxonomy that recognizes two genera, not one. The argument for this separation, based on morphological, genetic, behavioural and ecological, and biogeographical evidence, follows the same reasoning as that for the split of the capuchin monkeys into two genera, *Cebus* Erxleben, 1777, and *Sapajus* Kerr, 1792, by Lynch Alfaro, Silva-Júnior & Rylands (2012).

OVERVIEW OF MOLECULAR PHYLOGENETIC EVIDENCE FOR TAMARIN RELATIONSHIPS

Since the Jacobs, Larson & Cheverud (1995) study of phylogenetic relationships in *Saguinus*, analyses of molecular, protein and cytotgenetic data have consistently revealed a deep divergence between a small-bodied clade (the *nigricolis* group) and the remaining larger tamarins (Meireles et al., 1997; Canavez et al., 1999; Jacobs Cropp et al., 1999; Tagliaro et al., 2005; Araripe et al., 2008; da Cunha et al., 2011; Matauschek et al., 2011; Perelman et al., 2011; Springer et al., 2012; Sampaio et al., 2015) (Table 2, Fig. 4). Estimates of the divergence dates reported for this split range from 11 to 8 Ma, considerably older than the radiation of the marmosets that began to diversify about 6–5 Ma (Matauschek et al., 2011; Perelman et al., 2011; Schneider et al., 2012; Buckner et al., 2015). Studies have shown that genetic distances are generally greatest when members of the small-bodied group are compared with those of the large-bodied groups (Meireles et al., 1997; Jacobs Cropp et al., 1999; Canavez et al., 1999; Araripe et al., 2008; da Cunha et al., 2011).
Figure 1. The white-mouthed tamarin or *nigricolli* group. Illustrations by Stephen D. Nash. © Conservation International.
Genetic studies of the relationships within the nigricollis group have revealed S. fuscicollis to be a paraphyletic taxon (Jacobs Cropp et al., 1999; Matauschek et al., 2011). As a result, Matauschek et al. (2011) proposed a revision of the nomenclature that would involve either the reduction of all taxa to subspecies of S. fuscicollis or the raising of all taxa to full species. The latter is preferable if the current marmoset nomenclature is to be maintained (all as species), as well as to follow the current trend in Neotropical primate taxonomy that adopts the Phylogenetic Species Concept (PSC) (Groves, 2012). The PSC tends to increase the numbers of species often by raising taxa ranked as subspecies to species level.

In the most recent well-supported phylogenies, the mystax group, composed of (((S. mystax, S. inustus), S. labiatus), S. imperator), is recovered to have diverged from a common ancestor to the oedipus, midas and bicolor groups approximately 7–6 Ma (Perelman et al., 2011; Springer et al., 2012; Boubli et al., 2015; Buckner et al., 2015). Buckner et al. (2015) found that the oedipus group is composed of ((S. oedipus, S. geoffroyi), S. leucopus) and the midas and bicolor groups are composed of (S. niger, S. midas) and (S. martinsi, S. bicolor), respectively. The position of S. leucopus is still contentious as Springer et al. (2012) recovered it as the sister lineage to the mystax group, while Araripe et al. (2008) and Tagliaro et al. (2005), although analysing only single
Figure 3. The Midas tamarin or *midas* group, the Brazilian bare-faced tamarin or *bicolor* group, and the Colombian and Panamanian bare-face tamarin or *oedipus* group. Illustrations by Stephen D. Nash. © Conservation International.
Table 2. Estimated divergence times of the mystax, oedipus and midas/bicolor groups, and species relationships for each of the large-bodied tamarin clades for studies including multiple genes

<table>
<thead>
<tr>
<th>Study</th>
<th>Markers used</th>
<th>Inferred species relationships</th>
<th>Group node support</th>
<th>Age estimate (Ma)</th>
<th>Confidence interval (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mystax group vs. oedipus + midas/bicolor groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buckner et al. (2015)</td>
<td>16S rRNA, ABCA1, ADORA3, AFF2, VWF, COII, CytB, D-loop, DMRT1, FBN1</td>
<td>((S. mystax, S. inustus), S. labiatus), S. imperator</td>
<td>0.99 (PP)</td>
<td>6.1</td>
<td>4.5–7.9</td>
</tr>
<tr>
<td>Springer et al. (2012)</td>
<td>76 genes*</td>
<td>((S. mystax, S. labiatus), S. leucopus), S. imperator</td>
<td>50–70 (ML)</td>
<td>5.7</td>
<td>4.1–7.4</td>
</tr>
<tr>
<td>Perelman et al. (2011)</td>
<td>54 genes (X-chromosome, Y-chromosome, autosome, intron, exon, and UTR segments)</td>
<td>((S. mystax, S. labiatus), S. imperator)</td>
<td>100/100/1.00 (ML/MP/PP)</td>
<td>7.0</td>
<td>4.7–9.4</td>
</tr>
<tr>
<td>da Cunha et al. (2011)</td>
<td>5 nuclear loci with Alu insertions</td>
<td>(S. labiatus, S. inustus), S. imperator, S. mystax</td>
<td>-12.5</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Oedipus group vs. midas/bicolor groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>da Cunha et al. (2011)</td>
<td>5 nuclear loci with Alu insertions</td>
<td>(S. oedipus, S. leucopus)</td>
<td>97/100/100/88 (ML/BI/NJ/MP)</td>
<td>~9.5</td>
<td>n/a</td>
</tr>
<tr>
<td>Buckner et al. (2015)</td>
<td>16S rRNA, ABCA1, ADORA3, AFF2, VWF, COII, CytB, D-loop, DMRT1, FBN1</td>
<td>(S. oedipus, S. geoffroyi), S. leucopus</td>
<td>1.00 (PP)</td>
<td>4.9</td>
<td>3.6–6.6</td>
</tr>
<tr>
<td>Springer et al. (2012)</td>
<td>76 genes*</td>
<td>(S. oedipus, S. geoffroyi)</td>
<td>≥95 (ML)</td>
<td>4.7</td>
<td>3.1–6.5</td>
</tr>
<tr>
<td>Perelman et al. (2011)</td>
<td>54 genes (X-chromosome, Y-chromosome, autosome, intron, exon, and UTR segments)</td>
<td>(S. oedipus, S. geoffroyi)</td>
<td>100/100/1.00 (ML/MP/PP)</td>
<td>5.3</td>
<td>3.4–7.6</td>
</tr>
<tr>
<td>Midas/bicolor groups vs. oedipus group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buckner et al. (2015)</td>
<td>16S rRNA, ABCA1, ADORA3, AFF2, VWF, COII, CytB, D-loop, DMRT1, FBN1</td>
<td>((S. martinsi, S. bicolor), (S. midas, S. niger))</td>
<td>1.00 (PP)</td>
<td>4.9</td>
<td>3.6–6.6</td>
</tr>
<tr>
<td>Springer et al. (2012)</td>
<td>76 genes*</td>
<td>((S. martinsi, S. bicolor), (S. midas, S. niger))</td>
<td>70–~95 (ML)</td>
<td>4.7</td>
<td>3.1–6.5</td>
</tr>
<tr>
<td>Perelman et al. (2011)</td>
<td>54 genes (X-chromosome, Y-chromosome, autosome, intron, exon, and UTR segments)</td>
<td>((S. martinsi, S. bicolor), (S. midas))</td>
<td>100/100/1.00 (ML/MP/PP)</td>
<td>5.3</td>
<td>3.4–7.6</td>
</tr>
<tr>
<td>da Cunha et al. (2011)</td>
<td>5 nuclear loci with Alu insertions</td>
<td>((S. martinsi, S. bicolor), (S. midas, S. niger))</td>
<td>97/100/94/97 (ML/BI/NJ/MP)</td>
<td>~9.5</td>
<td>n/a</td>
</tr>
</tbody>
</table>

MP, maximum parsimony; ML, maximum likelihood; NJ, neighbour joining; PP, posterior probability; BI, Bayesian Inference; Ma, million years ago; n/a, not available.

*Many species have only a small subset represented of the full set of genes included in the study.

genes, found this species to form the sister lineage to all other large-bodied tamarins, but with low support (50–70%). The 16S ribosomal RNA gene studied by Araripe et al. (2008) is known to give inaccurate results when comparing species. The oedipus and midas and bicolor groups diverged from each other...
Marmosets, with 21 species and 22 species and subspecies, are less speciose than the tamarins. The tamarins show divergence times between their lineages that are comparable to or older than those of the three currently recognized marmoset genera, Callithrix, Mico, and Cebuella (Perelman et al., 2011; Buckner et al., 2015) (see Table 3, Fig. 4).

Table 3. Divergence times for callitrichid lineages

<table>
<thead>
<tr>
<th>Group or genus</th>
<th>Study</th>
<th>Age estimate (Ma)</th>
<th>Confidence interval (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nigricollis group (Leontocebus vs. Saguinus)</td>
<td>Buckner et al. (2015)</td>
<td>9.1</td>
<td>7.1–11.6</td>
</tr>
<tr>
<td></td>
<td>Perelman et al. (2011)</td>
<td>8.4</td>
<td>5.7–11.4</td>
</tr>
<tr>
<td></td>
<td>Matauschek et al. (2011)</td>
<td>10.1</td>
<td>7.1–12.4</td>
</tr>
<tr>
<td>Mystax group vs. midas/bicolor + oedipus groups</td>
<td>Buckner et al. (2015)</td>
<td>6.1</td>
<td>4.5–7.9</td>
</tr>
<tr>
<td></td>
<td>Boubli et al. (2015)</td>
<td>7.1</td>
<td>4.9–9.4</td>
</tr>
<tr>
<td></td>
<td>Perelman et al. (2011)</td>
<td>7.0</td>
<td>4.7–9.4</td>
</tr>
<tr>
<td>Oedipus group vs. midas/bicolor</td>
<td>Buckner et al. (2015)</td>
<td>4.9</td>
<td>3.6–6.6</td>
</tr>
<tr>
<td></td>
<td>Perelman et al. (2011)</td>
<td>5.3</td>
<td>3.4–7.6</td>
</tr>
<tr>
<td>Callithrix vs. Cebuella + Mico</td>
<td>Buckner et al. (2015)</td>
<td>5.4</td>
<td>4.3–6.7</td>
</tr>
<tr>
<td></td>
<td>Schneider et al. (2012)</td>
<td>5.3</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Perelman et al. (2011)</td>
<td>6.0</td>
<td>2.9–7.2</td>
</tr>
<tr>
<td>Cebuella vs. Mico</td>
<td>Buckner et al. (2015)</td>
<td>4.4</td>
<td>3.3–5.6</td>
</tr>
<tr>
<td></td>
<td>Schneider et al. (2012)</td>
<td>4.0</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Perelman et al. (2011)</td>
<td>4.8</td>
<td>2.9–7.2</td>
</tr>
<tr>
<td>Leontopithecus vs. Callimico + Callithrix + Cebuella + Mico</td>
<td>Buckner et al. (2015)</td>
<td>13.4</td>
<td>11.4–15.6</td>
</tr>
<tr>
<td></td>
<td>Perelman et al. (2011)</td>
<td>13.6</td>
<td>9.9–17.3</td>
</tr>
<tr>
<td></td>
<td>Opazo et al. (2006)</td>
<td>14.2</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Schneider et al. (2012)</td>
<td>11.5</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Perelman et al. (2011)</td>
<td>10.7</td>
<td>7.6–14.2</td>
</tr>
<tr>
<td></td>
<td>Opazo et al. (2006)*</td>
<td>12.1</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Ma, millions of years ago; n/a, not available.
*Dates from Opazo et al. (2006) are from the ML/Bayesian tree.

Figure 4. Ultrametric tree showing phylogenetic relationships and divergence ages among all callitrichid genera and tamarin species groups as reconstructed from nuclear sequence data (redrawn from Perelman et al., 2011). All nodes are significantly supported by maximum-parsimony and maximum-likelihood bootstrap values of ≥98%, and Bayesian posterior probabilities of 1.0. Blue bars indicate 95% credibility intervals of divergence times and the time scale below shows million years before present.
2011; Buckner et al., 2015) (see Fig. 4). Genetic distances among all the major clades of tamarins are also comparable to those between the genera of marmosets (Canavez et al., 1999). All of the marmoset taxa except for the pygmy marmosets, Cebuella, are currently recognized as full species (Rylands, Coimbra-Filho & Mittermeier, 2009).

Molecular phylogenetic studies of the small-bodied tamarins (nigricollis group) and large-bodied tamarins (remaining groups) consistently recover four distinct clades, even though internal arrangements found within each of these groups have varied (Jacobs Cropp et al., 1999; Tagliaro et al., 2005; Ara-ripe et al., 2008; Buckner et al., 2015). They are (1) the nigricollis group, (2) the mystax + inustus group, (3) the midas and bicolor groups, and (4) the oedipus group. There is certainly agreement concerning the placement of the mystax group as sister to the oedipus and midas/bicolor, while the nigricollis group represents the first tamarin split (e.g. Perelman et al., 2011).

As indicated by the varying results discussed, there are still doubts about some aspects of tamarin phylogenetics. There remain species that have little to no genetic information available and thus their relationship to other tamarins is unclear: for example, S. nigricollis herandezii, S. ursulus, S. mystax pluto and S. m. pileatus. Additionally, most studies have used only one or a few markers to study the phylogenetics of this group, the shortcomings of which have been discussed extensively elsewhere (Maddison, 1997; see Table 2). Exceptions to this have been the efforts of Perelman et al. (2011), in which 54 genes were sequenced for all species in the study, and Springer et al. (2012), who used the Perelman et al. (2011) data set and, in addition, concatenated all available sequences for many other primates. While Perelman et al. (2011) generated both nuclear and mitochondrial sequence data, Springer et al. (2012) harvested all their sequence data from GenBank. The Springer et al. (2012) study encompasses the largest number of primate taxa to date, but the number of genes available for each taxon varies considerably, and in some instances species are represented by as little as a single gene. Furthermore, the species identification of sequence data from GenBank is not always reliable.

TAXONOMY OF THE TAMARINS – CHANGES SINCE 1977

Hershkovitz’s (1977) monograph on the taxonomy and biology of the Callitrichidae organized, clarified and rationalized a tortuous and complex taxonomic history for this family. He placed all of the tamarins in a single genus, Saguinus Hoffmannsegg, 1807. His taxonomy has remained largely intact since then (Rylands et al., 2012). Here we detail the few taxonomic changes since 1977.

As mentioned, in the nigricollis group one subspecies has been lost (S. fuscicollis acensis found to be a hybrid) and one gained (S. fuscicollis mura described in 2009). Thornton (1988) believed that S. fuscicollis tripartitus was sympatric with S. fuscicollis lagotus and raised the former to a full species. Further surveys and analysis showed that they are not in fact sympatric, but tripartitus continued to be considered a distinct species (Heymann, 2000a; Heymann, Encarnación-C & Canaquin-Y, 2002; Matauschek, 2010; Rylands et al., 2011; Aquino et al., 2014).

The distinctive white S. f. melanoleucus was first described as a full species (Mico melanoleucus Miranda Ribeiro, 1912), and was listed by Coimbra-Filho (1990) as such, with acensis and crandalli as subspecies. As mentioned, acensis is now believed to be a hybrid, and crandalli, known from a single specimen of unknown provenance (Hershkovitz, 1966b), may likewise be a hybrid. Coimbra-Filho’s taxonomy in this case was taken up by Groves (2001, 2005) and Rylands & Mittermeier (2008). Tagliaro et al. (2005) used data on ND1 mitochondrial DNA from one specimen of melanoleucus and six specimens of S. fiscicollis weddelli to test this hypothesis. Differences between melanoleucus and weddelli were no larger than among the weddelli specimens, thus failing to support Coimbra-Filho’s (1990) separation. Matauschek et al. (2011) also found that the forms weddelli and melanoleucus were genetically very closely related. They recommended, however, that, due to its distinctive pelage colour (white), melanoleucus should continue to be considered a valid taxon, but as a subspecies of Saguinus weddelli until further genetic analyses are carried out.

The northernmost of Hershkovitz’s (1977) saddle-back tamarins, Saguinus fuscicollis fuscus, occurring north of the Río Putumayo-Icá in Colombia and Brazil, is evidently geographically isolated from other saddle-back tamarins (S. n. nigricollis occurs along the right bank of the Putumayo-Icá) (see Rylands et al., 2011). The geographical proximity of S. f. fuscus and S. nigricollis is concordant with the phylogenetic affinity of the two found by Jacobs Cropp et al. (1999), who suggested that fuscus should be considered a separate species as a result; a suggestion supported by Cheverud & Moore (1990) who studied facial morphology.

Matauschek et al. (2011) carried out a molecular genetic analysis of the Peruvian saddle-back tamarins and black-mantle tamarins. They identified four clades and recommended that tripartitus, lagotus, leucogenys, illigeri, nigrifrons and weddelli, all
placed as subspecies of *S. fuscicollis* by Hershkovitz (1977), be considered species. Rylands & Mittermeier’s (2013) taxonomy of the saddle-back tamarins (Table 1), influenced particularly by Matauschek et al. (2011), included eight species and 14 taxa (species and subspecies). Sampaio et al. (2015) subsequently reported on the provenance of *S. f. cruzlimai*, unknown to Hershkovitz (1966b, 1977), and argued that it too should be classified as a species. The Brazilian saddle-back tamarins *avilapiresi, primitivus* and *mura* remain as subspecies of *S. fuscicollis* pending equivalent molecular phylogenetic analyses.

The study of Matauschek et al. (2011) revealed intergradation between *Saguinus fuscicollis illigeri* and *S. f. leucogenys*, especially in San Martín, Moyobamba, Peru, and further north in the Río Mayo valley. There, phenotypes were more similar to *S. f. illigeri*, otherwise known along the ríos Ucayali, Tapiche and Pacaya. Hershkovitz (1977) also noted that Moyobamba specimens were similar to *S. f. illigeri*, but assigned them to *S. f. leucogenys*. This finding of similarity was reflected in the genetic data. North of the Río Pachitea in the northern part of the range, *S. f. leucogenys* (sensu Hershkovitz, 1977) formed a clade with *S. f. illigeri*. Samples of *S. f. leucogenys* south of the Río Pachitea formed part of the clade with other eastern/south-eastern taxa (*S. w. weddelli, S. f. fuscicollis, S. f. nigirifrons* and *S. f. melanoeleucus*). Matauschek et al. (2011: 571) wrote that ‘morphological and mitochondrial evidence suggested a range limit for *S. f. leucogenys* far more southwards than described by Hershkovitz (1977) and an inclusion of the northern populations of *S. f. leucogenys* into *S. f. illigeri*’.

In Hershkovitz’s (1977, 1982) taxonomy there is just one species of black-mantle tamarin, *Saguinus nigricollis*, with three subspecies: *nigricollis, graellsi* and *hernandezi*. Hernández-Camacho & Cooper (1976) and Defler (1994) suggested that *graellsi* was a full species on the basis of supposed sympathy with a population of *S. n. nigricollis* in the region of Puerto Leguízamo in southern Colombia. Groves (2001, 2005) maintained *graellsi* as a full species based on Hernández-Camacho & Cooper’s (1976) supposition of its sympathy with *nigricollis*. Defler (2004) and Hershkovitz (pers. comm. to Defler, 2004), concluded, however, that the specimens considered to be *S. n. nigricollis* were in fact just dull-coloured *S. fuscicollis fuscus*, and Hernández-Camacho & Defler (1989) and Defler (2004) listed *graellsi* as a subspecies of *S. nigricollis*. Molecular genetic data have indicated that *graellsi* and *nigricollis* are inseparable (Matauschek et al., 2011), and there seems to be no identifiable geographical or ecological barrier separating their ranges between the ríos Putumayo and Napo (Matauschek et al., 2011; Rylands et al., 2011). Furthermore, *S. nigricollis* is more closely related to some taxa previously considered as subspecies of *S. fuscicollis* than these are amongst each other (Matauschek et al., 2011). This renders *S. fuscicollis* a polyphyletic taxon and provides additional arguments for giving species rank to its subspecies.

Currently, the *nigricollis* group is considered to comprise ten species and 17 species and subspecies. Molecular phylogenetic analyses have yet to be carried out on the forms *S. nigricollis hernandezi, S. fuscicollis avilapiresi, S. f. mura, S. f. primitivus* and *S. weddelli crandalli*.

In the *mystax* group, Hershkovitz (1977, 1979) listed *Jacchus rufiventer* Gray, 1843, as a synonym of *S. l. labiatus*. He recognized that red-bellied tamarins in the north of their range were distinct but argued that it was probably a clinal variation. Groves (2001, 2005) revalidated *rufiventer* with a provisional distribution (indicated by Hershkovitz) that extends south from the Río Solimões between the ríos Madeira and Purus to the Río Ipixuna, an east bank tributary of the Río Purus. Groves (2001) also argued that, while *S. m. mystax* and *S. m. pluto* are quite similar to each other, the red-capped *pileatus* is distinct, and he listed it as a separate species, *S. pileatus*. Current evidence indicates that the ranges of *S. m. mystax* and *S. m. pluto* are separated by *pileatus* (Rylands, Coimbra-Filho & Mittermeier, 1993; Rylands & Mittermeier, 2008), indicating that pluto would then need to be considered a distinct species as well. The affinities of the little known *S. inustus*, forming a monotypic mottled-face tamarin group, were a mystery for Hershkovitz and for all. The surprising (but geographically reasonable) finding that *inustus* is genetically aligned with the *mystax* group means we have provisionally placed it with the moustached tamarins, although more research is needed. Hershkovitz (1979) reviewed the taxonomy and distributions of *S. imperator*, resurrecting *imperator subgrisescens*, earlier (1977) considered a synonym.

Vallinoto et al. (2006) found that *S. midas* from the Río Utumá separated out from the populations from the Río Trombetas to the east, about 200 km, indicating a possibility that red-handed (western) and yellow-handed (eastern and northern) forms of *S. midas* may be geographical races or distinct species. Hershkovitz (1977) listed the black-handed tamarin, (*niger*) as a subspecies of *S. midas*. It is now considered a full species, and Tagliaro et al. (2005) and Vallinoto et al. (2006) indicated that the Río Tocantins is a barrier to gene flow, and that *S. niger* on either side of the river may be distinct taxa. Gregorin & de Vivo (2013) subsequently revalidated *Saguinus ursulus* Hoffmannsegg as the form
east of the Río Tocantins, with *S. niger* restricted to the west of the river.

Hershkovitz (1977) placed the forms *ochraceus* Hershkovitz, 1966, and *martinsi* Thomas, 1912, as subspecies of *S. bicolor*. Groves (2001, 2005) listed them as subspecies of *martinsi*. Coimbra-Filho, Pissinatti & Rylands (1997) indicated the possibility that *ochraceus* may have arisen as a natural hybrid, intermediate between *bicolor* to its west and *martinsi* to the east.

For the *oedipus* group, Hershkovitz (1977) considered the Panamanian *geoffroyi* to be a subspecies of *S. oedipus*. Thorington (1976), Hanihara & Natori (1987), Kanazawa & Rosenberger (1988) and Skinner (1991) argued that it should be considered a distinct species (see Rylands et al., 2006).

TAMARINS: DISTRIBUTIONS, ECOLOGY, BEHAVIOUR AND SYMPATRY

The tamarins are very largely Amazonian, extending outside of the basin only into the Guianas (*midas* group) and northern Colombia and Panama (*oedipus* group) (see Figs 5, 6).

Nigricollis group – south of the ríos Caquetá, Caguán and Orteguaza, south through Ecuador and Peru, east of the Andes, to about 16°S in Bolivia, and east to the Río Ji-Paraná in the state of Rondônia, Brazil.

Mystax/inustus group – south of the Río Solimões-Amazonas, east of the Río Ucayali, extending east to the Río Madeira, east and south to the ríos Urubamba and Inuya in Peru, and as far as the southern bank of the Río Muyumanu in Bolivia, with *inustus* between the Río Negro and the Río Solimões, extending west into Colombia.

Midas/bicolor groups – Guiana Shield, east of the ríos Negro and Branco and the Essequibo River in Guyana, north of the Río Amazonas, and east of the Río Xingu, south of the Río Amazonas.

Oedipus group – northern Colombia, basins of the ríos Cauca and Magdalena, and Panama.

The *mystax* group tamarins are broadly sympatric with the *nigricollis* group south of the Río Solimões-Amazonas and west of the Río Madeira, and they commonly form mixed-species groups (Heymann, 1997; Bicca-Marques, 1999; Buchanan-Smith, 1999; Heymann & Buchanan-Smith, 2000). The *nigricollis* group tamarins are smaller than those of the *mystax* group. Garber (1992: 470) indicates a body mass of 310–410 g for *S. fuscicollis*, 475–525 g for *S. labiatus* and 525–650 g for *S. mystax*. The *midas/bicolor* and *oedipus* groups are entirely allopatric.

White-mouthed tamarins (the *nigricollis* group) have been the subject of several ecological and behavioural studies, although most have focused on only two taxa, *S. nigrifrons* and *S. w. weddelli* (Table S1). Despite this bias, existing studies suggest that white-mouthed tamarins are ecologically and behaviorally relatively uniform. A striking feature of their ecology, notable even during short observations, is the prevailing use of lower forest strata and the

Figure 5. The geographical distribution of the *nigricollis* group tamarins. Map by Stephen D. Nash. © Conservation International.

higher proportion of leaping between vertical trunks in their locomotor repertoire (Yoneda, 1981, 1984; Garber, 1991, 1992; Nyakatura & Heymann, 2010). This is even more noticeable in areas of sympatry with species of the mystax group that occupy higher strata than white-mouthed tamarins and more often employ movements along horizontal branches and leaping from canopy to canopy (Garber, 1991; Buchanan-Smith, 1999; Heymann & Buchanan-Smith, 2000; Heymann, 2001; Nyakatura & Heymann, 2010). Comparison of different taxa of white-mouthed tamarins reveals that the prevailing use of lower forest strata is independent of sympatry or allopatry with other tamarin taxa (Yoneda, 1981, 1984; Soini, 1987; Buchanan-Smith, 1999; Heymann, 1997). It is thus not the consequence of vertical displacement by the larger taxa of the mystax group but rather represents a uniform trait of white-mouthed tamarins (Buchanan-Smith, 1999).

White-mouthed tamarins are also highly distinct from other tamarin taxa in their prey foraging behaviour. They search for prey concealed in knotholes, crevices, bromeliad tanks and leaf litter, amongst other substrates (Terborgh, 1983; Yoneda, 1984; Peres, 1993b; Smith, 2000; Nadjafzadeh & Heymann, 2008). This is in contrast to the foraging behaviour of larger tamarins, which focus on exposed prey on the surface of leaves, branches and trunks (Terborgh, 1983; Yoneda, 1984; Peres, 1993b; Smith, 2000; Nadjafzadeh & Heymann, 2008). Notably, the hands of white-mouthed tamarins are relatively longer and narrower than those of other tamarin taxa (Bicca-Marques, 1999), probably as an adaptation to this extractive foraging behaviour.

Interspecific differences in prey foraging behaviour led Garber (1993) to identify three patterns in Saginus. These patterns correspond to the Panamanian tamarin (S. geoffroyi; Pattern 1), the mystax group and perhaps S. midas (Pattern 2), and the white-mouthed tamarins (Pattern 3). While Patterns 2 and 3 are confirmed by several independent studies on different taxa and populations (see above), the validity of Pattern 1 and whether it extends to the sister species of S. geoffroyi – S. oedipus and S. leucopus – remains to be determined. In any case, the ecological distinctiveness of the white-mouthed tamarins provides additional arguments for their taxonomic separation.

While their prey foraging behaviour is distinct, there seem to be few differences between white-mouthed and other tamarins with regard to social organization and group size. In all tamarins, groups contain between two and 11 individuals (reviewed by Digby, Ferrari & Saltzman, 2011). Breeding is generally restricted to a single female, although both successful and unsuccessful breeding by multiple females have been observed (Calegaro-Marques, Bicca-Marques & de Azevedo, 1995; Goldizen et al., 1996; Tirado Herrera, Knogge & Heymann, 2000). The prevailing social mating system (sensu Kappeler & van Schaik, 2002) is polyandry, but monogamy, polygyny and polygynandry also occur (Terborgh &

Figure 6. The geographical distributions of the tamarins of the mystax group (orange), the oedipus group (purple), and the midas and bicolor groups (green). Map by Stephen D. Nash. © Conservation International.
In contrast to the lack of obvious differences in social organization and mating system, clear differences seem to exist with regard to olfactory communication. While all tamarins studied so far employ anogenital, suprapubic and sternal scent marking (Epple et al., 1993), suprapubic marking seems to be much more frequent in white-mouthed than in other tamarins (Heymann, 2001). Furthermore, scent marking is more complex, i.e. involves the combination of more single acts and more different types of scent marking, in white-mouthed tamarins (Heymann, 2001). Such differences may relate to subtle and, to date, unrecognized differences in social organization, social structure and mating system (sensu Kappeler & van Schaik, 2002). However, the scarcity of data on scent marking behaviour in tamarins except for S. nigrifrons and S. mystax makes this interpretation tentative.

In sum, white-mouthed tamarins differ from other tamarins primarily with regard to forest strata use, locomotion and prey foraging. These differences are substantial and support a generic separation of the white-mouthed from other tamarins.

Except for the recognition of a separate foraging type (Pattern 1) for S. geoffroyi by Garber (1993), behavioural or ecological differences between the different species groups of the larger tamarins are less obvious or currently unknown. However, as with the nigricollis group, intensive and long-term studies are restricted to a few species, namely from the mystax group, currently restricting detailed comparisons (Table S2). The recognition by Ackermann & Cheverud (2002) of a distinct cranio-facial morphology in the oedipus group (see also below) suggests that concomitant behavioural or ecological differences may exist, at least between it and the other groups.

TAXONOMIC HISTORY OF GENUS NAMES FOR THE TAMARINS

The generic classification of the tamarins has a complex and confused history. Groves (2001) listed 11 genus names attributed specifically to tamarins, the long-tusked callitrichids, a number of which included the lion tamarins. Here we note some pertinent aspects of callitrichid nomenclature and the genus names attributed to the tamarins, particularly the use of the name Leontocebus Wagner, and how, despite it meaning lion monkey, came to be attached to the tamarins, and the nigricollis group tamarins in particular.

The first valid name attributed specifically to the tamarins was Saginus Hoffmannsegg, 1807, but this was not recognized for most of the history of their taxonomic classification – Hershkovitz in 1958 was the first to pull it out of obscurity. In 1812, Étienne Geoffroy Saint-Hilaire created the name Midas, with Hoffmannsegg’s Saguinus ursula as the type, but Midas had already been taken for a genus of Diptera.

The name Leontocebus was created by Wagner (1839) as a subgenus that included, implicitly, the following species: Hapale chrysomelas, H. chrysopyga, H. leonina, H. rosalia, H. bicolor and H. oedipus. Except for leonina, these species’ names are in use today. Simia leonina was named by von Humboldt (1805) and means lion monkey, leonina alluding to the long hair on the neck and mantle giving the appearance of a mane (Palmer, 1904). The description was based on two tamarins that Humboldt saw in captivity in Popayán, Colombia, which were said to have been brought from Mocoa (a river and town at the head of the Rio Caquetá) and the Rio Putumayo, at the eastern base of the Andean Cordillera Oriental (Hershkovitz, 1949, 1957, 1977; Cabrera, 1956). Wagner (1839) did not designate a type species for Leontocebus. Miller (1912) was the first to do so, selecting Midas leoninus É. Geoffroy Saint-Hilaire (a synonym of Simia leonina von Humboldt, 1805).

Lesson (1840) ordered the subfamily Hapalinae in two genera: (1) the marmosets Hapale Illiger, with two subgenera Hapale (ear tufts and ringed tail) (=Callithrix Erxleben, 1777) and Mico (no ear tufts and no rings on the tail) (the latter in use today for the Amazonian marmosets); and (2) the tamarins Midas É Geoffroy Saint-Hilaire, with three subgenera: Midas, Oedipus Lesson and Leontopithecus Lesson. Oedipus as a genus name was preoccupied by Oedipus Tschudi, 1838, for a group of New World salamanders. Leontopithecus comprised three species: Leontopithecus marikina (from Rio de Janeiro and Cabo Frio = golden lion tamarin Leontopithecus rosalia [Linnaeus, 1766]) (p. 200), Leontopithecus fuscus (from Mocoa, Colombia = Simia leonina Humboldt) (p. 202) and Leontopithecus ater (from São Paulo = black lion tamarin Leontopithecus chrysopygus [Mikan 1820]), with a variété from the forests between São Pedro d’Alcantara and the Sertão d’Ilhéos and the rios Belmonte (=Jequitinhonha) and Pardo = golden-headed lion tamarin Leontopithecus chrysomelas (Kühl, 1820) (p. 204). Lesson was familiar with the name chrysopygus, and the reason for his use of ater is unknown. Lesson (1840) did not name a type species for this subgenus. Although not stating specifically that it was a subgenus, Lesson (1840: 199) also listed Marikina for the pied tamarin, bicolor Spix, 1823, which Hershkovitz (1949: 411) used as the genus name for all the tamarins.

So why did Lesson (1840) change the name of Simia leonina? Cabrera (1956) noted that Simia leonina Humboldt, 1805, was a homonym of Simia leonina Shaw, 1800; which he said was the Wandering or Malabar monkey, which are common names of the lion-tailed macaque, Macaca silenus. There is an illustration of the lion-tailed macaque Macaca silenus (Linnaeus, 1758) with the caption Simia silenus L. (Plate XI) in Wagner (1839) and, following it (Plate XIB), one by a different artist, evidently also of a lion-tailed macaque, that is captioned ‘Simia leonina’. Fooden (1975: 75) noted that ‘[Simia] leonina: G. Cuvier, 1817, p.108, (not Shaw, 1800)’ was a synonym of Macaca silenus.

Reichenbach (1862) was the first to use Lesson’s (1840) Leontopithecus, and included only leonina. Gray (1870) used the name Leontopithecus Lesson for the lion tamarins (rosalia and chrysomelas; no mention of Leontocebus), Oedipus Lesson for the cotton-top tamarin and Geoffroy’s tamarin in northern Colombia and Panama (the latter in a subgenus Hapanaella Gray), and Seniocebus Gray for the pied tamarin, bicolor Spix. The remaining tamarins he placed in the genus Midas Geoffroy with three subgenera: Mystax Gray (mystax group), Midas (nigricollis group) and Tamarin Gray (midas group). As mentioned, Oedipus was preoccupied by a salamander genus, but Mystax too was preoccupied by a genus of caddis fly, Trichoptera, Mystax Stephens, 1829. Tamarin, with the type species Midas ursulus Geoffroy, was antedated by Saginus Hoffmannsegg.

The Catalogus Mammalium of Trouessart (1904) placed the tamarins in the genus Midas É. Geoffroy Saint-Hilaire with the following subgenera: Leontopithecus Lesson (including ?leoninus), Oedipomidas Reichenbach, Tamarinus nom. nov. (nigricollis and mystax groups + chrysopygus) and Midas (midas and bicolor groups). Midas mystax Spix was designated the type species of Tamarinus by Pocock (1917).

Elliot (1913) applied the name Leontocebus for all the lion tamarins and the moustached and nigricollis group tamarins. Evidently ignorant of Miller’s (1912) designation of Midas leoninus he named Hapale chrysomelas Wied (the golden-headed lion tamarin) as the type species of the genus. He divided Leontocebus into two subgenera: Tamarinus (moustached and nigricollis group tamarins, and L. chrysopygus) and Marikina Reichenbach (lion tamarins Leontocebus leoninus, L. rosalia and L. chrysomelas, but not L. chrysopygus). The Colombian and Panamanian bare-face tamarins (oedipus and geoffroyi) he placed in the genus Oedipomidas Reichenbach. The Brazilian bare-face tamarins (bicolor and martinsi) were placed in the genus Seniocebus Gray, and the midas group was placed in the genus Cercopithecus Gronov.

Elliot (1913) placed Leontopithecus Lesson as a junior synonym of Leontocebus, because the publication date of Wagner’s Die Säugthiere in Abbildungen nach der Natur mit Beschreibungen von Dr. Johann Christian Daniel von Schreber, following Palmer (1904), was given as 1839. In a footnote (p. 225), however, Pocock (1917) cast doubts on the date: ‘Elliot, following Palmer gives 1839 as the date of this name, presumably on Sherborn’s authority (P.Z.S. 1891, p.587); but although the part of Wagner’s edition of Schreber dealing with the monkeys was published, according to Sherborn, in 1839, it is not obvious that the “Übersicht” [overview] and preface were published till 1840. The name may be given the benefit of the doubt, thus carrying priority over Leontopithecus.’ Pocock cites Sherborn (1891), but in the subsequent work of the same author (Sherborn, 1922–1932) the name Leontocebus is clearly stated as being dated from 1839. This is a moot point, however, because Miller (1912) had already designated Simia leonina as the type species for Leontocebus, and Cabrera (1956) showed that Humboldt’s Simia leonina was in fact a saddle-back tamarin (see below). Pocock (1917) designated Lesson’s Leontopithecus marikina [=L. rosalia] as the type species for Leontopithecus (see Kleiman, 1981), while following Elliot (1913) in placing Leontopithecus as a synonym of Leontocebus.

In his mordant review of the genera of Hapalidae, then the family name for the marmosets and tamarins, Pocock (1917) restricted the name Leontocebus (synonyms: Leontopithecus Lesson and Marikina Reichenbach) to the lion tamarins based on their long-palmed, syndactylyous hands. He included chrysomelas and rosalia, and wrote (p. 255) that ‘this genus probably contains L. leonina, Humb., a species about which practically nothing is known apart from the colour.’ The black lion tamarin was evidently very little known as well, and Pocock made no comment on Elliot’s placement of Leontocebus chrysopygus (Wagner) in the subgenus Tamarinus. Referring particularly to the morphology of the ear (pinna) he separated the Colombian bare-face tamarins (oedipus and geoffroyi) in the genus Oedipomidas Reichenbach, and placed all the remaining tamarins in the genus Mystax Gray. He discounted as such Elliot’s use of the names Seniocebus (bicolor and martinsi) and Cercopithecus (the midas group). Thomas (1922) agreed with Pocock’s (1917) revision, but re-introduced Seniocebus Gray for leucopus, bicolor and martinsi.

da Cruz Lima (1945), dealing only with the tamarins of Amazonia, adopted a taxonomy with just two genera: Marikina Lesson (bicolor, martinsi) and Tamarin Gray (mystax group, nigricollis group and midas group). Simpson (1945) listed Leontocebus Wagner as the generic name for all the tamarins and lion tamarins.
Hershkovitz (1949) placed the tamarins and lion tamarins in two genera, as follows: Marikina Lesson, with three subgenera Marikina Lesson (bicolor group and leucopus), Tamarin Gray (nigricolli group, midas group, mystax group) and Oedipomidas Reichenbach (oedipus group, but not leucopus); and Leontocebus Wagner (lion tamarins, rosalia, chrysomelas and chrysopygus). Hershkovitz (1949: 424) concluded that the original description and coloured plate of Simia leonina Humboldt indicated ‘a marmoset whose identifiable characters correspond to those of Leontocebus rosalia’, and that ‘it is fitting to dispose of leonina in the synonymy of rosalia’.

Hill (1957) divided the tamarins into four genera as follows: Tamarin Link (midas group + inustus), Marikina Lesson (bicolor and martinsi), Oedipomidas Reichenbach (oedipus and geoffroyi) and Tamarinus Trouessart (the entire nigricollis group along with the moustached tamarins and leucopus). He placed the three lion tamarins (rosalia, chrysomelas and chrysopygus) in the genus Leontocebus, with Leontopithecus Lesson, 1840 a junior synonym. He did not refer to a type species and did not make reference to Miller (1912). Hill (1957: 262) explained that Leontocebus leoninus (Humboldt) was based on two specimens seen living in captivity at Popayán, Colombia ‘at the opposite end of the New World tropics from the natural habitat of the other maned tamarins’ and, with the lack of information (no other evidence of a hapalid occurring in Colombia), and based on the fact that the ‘original description and plate recall rosalia’, considered it a synonym.

It was Cabrera (1956) who clarified that Humboldt’s Simia leonina was not a lion tamarin, but a member of the white-mouthed tamarin or nigricollis group. Hershkovitz (1957) reported on his examination of 16 specimens of hairy-faced tamarins that he collected between the rivers Caquetá and Putumayo – the type region of Simia leonina – in 1952. Hershkovitz (1957: 17) confirmed that ‘except for the very different pygmy marmoset, Cebuella pygmaea, no other member of the family Callitrichidae [sic] occurs in the area [and that] Discounting vagaries of the original description of Simia leonina and liberties taken by the artist in depicting an animal he never saw, the [...] series exhibits all positive diagnostic characters of Humboldt’s monkey.’ With Simia leonina being a tamarin and the type species for Leontocebus Wagner, Cabrera (1957) placed all the tamarins in the genus Leontocebus with three subgenera: Leontocebus (nigricollis group, mystax group, midas group), Oedipomidas Reichenbach (type Simia oedipus Linnaeus: oedipus group, but not leucopus) and Marikina Lesson (type Midas bicolor Spix: bicolor group and leucopus).

In a preface of nomenclatural emendations, Hill (1960: xxi-xxii), having read Cabrera (1956) and Hershkovitz (1957), acknowledged that Leontocebus pertained to a ‘white-faced’ tamarin, and affirmed that Leontideus Cabrera, 1956, was the correct name for the lion tamarins. He informed that the genus names Tamarin and Tamarinus used in his 1957 volume should, as a result, be considered junior synonyms of Leontocebus.

Hershkovitz (1958: 53) established Saginus Hoffmannsegg as the ‘first valid generic name for the group of marmosets characterized by normal lower canines’. He cited as synonyms the following: Leontocebus Wagner, Leontopithecus Lesson, Tamarin Gray, Cercopithecus Gronov (rejected), Midas Humboldt (pre-occupied), Mysax Gray (pre-occupied) and Tamarinus Trouessart. His 1958 arrangement took into account Hill (1957) and included three subgenera: Saginus, Oedipomidas Reichenbach (synonyms Oedipus Lesson [pre-occupied] and Hapantella Gray) and Marikina Lesson (synonym Seniotus Gray). The lion tamarins he placed in the genus Leontideus Cabrera (synonyms Marikina Reichenbach, and Leontocebus of authors not Wagner, 1839). Napier & Napier (1967: 376) followed Hershkovitz’s (1958) arrangement. In his magnum opus of 1977, Hershkovitz avoided the use of subgenera, and instead classified the diversity of the tamarins, all in the genus Saginus, in the six species’ groups discussed at the beginning of this article (see Table 1).

SPECIES GROUPS AND A PROPOSAL FOR THE USE OF THE GENUS NAME LEONTOCEBUS FOR THE NIGRICOLLIS GROUP

Since 2005, molecular genetic studies have been shedding light on the phylogeny of the callitrichids. They have clearly confirmed the taxonomic arrangement of the tamarin species’ groups proposed by Hershkovitz (1977). All but the little known motted-face tamarin group, S. inustus, fall into distinct clades that conform to his groups. Saginus inustus, first described as Leontocebus midas inustus, was thought to be a hybrid of midas × nigricollis by Hill (1957), who put it in the genus Tamarin (as Tamarin inustus) with the midas group (but could not accommodate it in the taxonomic key). Napier & Napier (1967) placed it in the subgenus Marikina with the bicolor group and S. leucopus. Hershkovitz (1977) placed it in its own group. A molecular genetic re-analysis by Buckner et al. (2015), using a D-Loop sequence for this species from Jacobs Cropp et al. (1999), placed inustus in the mystax group, as did Boubli et al. (2015), using cytochrome b sequences.
from three *S. inustus* individuals wild-caught from known provenance.

The place of *Saguinus leucopus* was for many years in doubt. Elliot (1913) made no reference to it. Thomas (1922) placed it in the genus *Seniocebus* Gray, along with *bicolor* and *martinsi*. Hershkovitz (1949), Cabrera (1957) and Napier & Napier (1967), likewise, aligned it with *bicolor* and *martinsi*, but, in the subgenus *Mariquina Lesson*. Hill (1957) considered it to be anomalous and placed it in *Tamarinus Trouessart*, but, as with *inustus*, was unable to accommodate it in his taxonomic key. Hershkovitz (1977) placed it as a member of the *oedipus* group, an arrangement borne out in subsequent morphological (Hanihara & Natori, 1987; Natori, 1988; Moore & Cheverud, 1992; Natori & Hanihara, 1992) and molecular genetic analyses (Tagliaro et al., 2005; Buckner et al., 2015).

The estimated ages of the lineages are shown in Tables 2 and 3 and indicate the phylogeny summarized in Fig. 4. The earliest lineage leading to a crown group of tamarins was the *nigricollis* group (the small-bodied tamarins) that appeared in the early Late Miocene, around 9 Ma, the second to appear was the *mystax* group in the middle Late Miocene, around 7 Ma, and the third was the *oedipus* group, right at the end of the Miocene, entering the Pliocene, around 5 Ma. The lineages of the *bicolor* and *midas* groups appeared around 2.5 Ma, during the Pliocene–Pleistocene transition. In comparison, the diversification of the marmosets began much later, with the lineage of the Atlantic forest marmosets, *Callithrix*, appearing about 5.4 Ma (end of the Miocene) and the Amazonian marmoset split of *Cebuella* and *Mico* occurring about 4.4 Ma, in the Early Pliocene.

Our proposal here is that the Late Miocene divergence (11–8 Ma) between small- and large-bodied tamarin lineages be reflected in tamarin taxonomy by raising the *nigricollis* group to the generic level. This is in accordance with the recommendations of Goodman et al. (1998); (see also Groves, 2001: 17–20) regarding an age-related taxonomic classification of the primate clades. As stated by Groves (2001: 18), one of the authors of the proposed classification of Goodman et al. (1998), a proviso is that any alterations must be made in line with the ‘principle of least violence’, meaning that it is important to preserve the ranks with the content with which they are widely recognized. Goodman et al. (1998) proposed 11–7 Ma (Late Miocene) as the appropriate age of the last common ancestor of different crown groups that should be considered distinct genera.

In addition to the evidence for at least 8 Myr of evolutionary isolation of the *nigricollis* group, as has already been discussed, the morphology (smaller size) and ecological differences that permit sympatry and mixed-species groups with the *mystax* group of tamarins also support a distinction at the generic level. The *oedipus* group (Panama and northern Colombia) and the *midas/bicolor* groups (Guiana Shield) are entirely allopatric.

The assessment of the interspecific affinities in the tamarins has been based on pelage, size, appearance and geographical distribution (sympathy and proximity), but morphological studies in recent times have focused on the cranio-facial and dental morphology. Hanihara & Natori (1987) made dental measurements and, applying a numerical taxonomy, found that the *nigricollis* group (*S. nigricollis* and *S. fusciollis*) was distinct from the *mystax* group (*S. labiatus* and *S. mystax*), and that the *oedipus* group (*S. oedipus*, *S. geoffroyi* and *S. leucopus*) was clearly separated from both. A cladistic analysis of dental and cranial morphology by Natori (1988) had the *oedipus* group again separate, and the *nigricollis* group, with *inustus*, separate from the *mystax* group and the *bicolor/midas* groups. Although the cladogram conformed to the species groups, it contained a trichotomy and a pentachotomy, and Natori (1988) indicated that more characters need to be included to obtain a clearer phylogenetic pattern. A study of tooth shape by Natori & Hanihara (1992) again separated *S. oedipus* and *S. geoffroyi*, the *midas* group and the *nigricollis* group. *Saguinus leucopus* and *S. imperator* formed a separate pair in the dendrogram, *S. inustus* grouped with *S. mystax* and *S. labiatus*, and *S. bicolor* aligned with the *midas* group. A combined dental and cranial morphometric analysis of the hairy-faced tamarins by Hanihara & Natori (1989) clearly separated the *nigricollis* group (*S. nigricollis* and *S. fusciollis*) from the *mystax* group (*S. imperator*, *S. labiatus* and *S. mystax*), and both were distinct from the *midas* group (*S. midas* and *S. niger*).

Ackermann & Cheverud (2002), also studying cranio-facial variation in the tamarins, concluded that there was divergent size selection responsible for the morphological diversification of the two major clades – the large-bodied tamarins and the small-bodied *nigricollis* group – but that diversification was not due to convergent size selection alone, occurring also for non-allometric aspects of the cranial shape. Their results were consistent with Garber’s (1992) proposal that selection was occurring for specialization in the use of vertical postures to forage for animal prey on large vertical supports (tree trunks). While the patterns of interspecific cranio-facial variation did not match DNA-based phylogenetic relationships, their results did largely agree with the species groups, the exceptions being that although *Saguinus geoffroyi* and *S. oedipus* came out as extreme outliers, *S. leucopus* was more similar to the other *Saguinus,* and
the bicolor group was more similar to the nigricollis group than the midas group (Ackermann & Cheverud, 2000).

A distinctive feature of the oedipus group, which impressed Pocock (1917), is their small square ears, and through all the confused taxonomic history of the tamarins described above, the oedipus group has consistently been singled out, either as a subgenus (Lesson, 1840; Gray, 1870; Trouessart, 1904; Hershkovitz, 1949, 1958; Napier & Napier, 1967) or as a genus (Reichenbach, 1862; Elliot, 1913; Pocock, 1917; Thomas, 1922; Cabrera, 1957; Hill, 1957). In conclusion, the patterns in dental and cranial morphology agree with the species groups of nigricollis, mystax, oedipus, midas and bicolor.

GENUS LEONTOCEBUS WAGNER

Wagner, J. A. 1839. Schreber's Säug. Suppl. 1. 1839: 9th page [marked v, the 3rd page of the Übersicht]. Type species designated by Miller (1912: 380) *Midas leoninus* É. Geoffroy Saint-Hilaire, 1812 (= *Simia leonina* Humboldt, 1805; = *Leontopithecus fuscus* Lesson, 1840). Type species designated by Elliot (1913; 194) *Hapale chrysomelas* Wied, 1820 (a lion tamarin). Pocock (1917; 255) followed Elliot (1913) in listing *chrysomelas* as the type species.

Synonyms

White-mouthed tamarins, nigricollis species group

Facial skin, rhinarium, ears, and external genitalia, blackish; cheeks, temple, forehead, and crown densely covered with long hairs; broad circumbuccal band thickly haired white and not encircling muzzle; long and conspicuous moustache absent in adults; ears thinly haired and mostly or entirely exposed, not concealed by mane or preauricular tufts; colour of middle or lower back more or less well defined from shoulders; terminal half or more of tail uniformly coloured, not banded, barred, or with nearly entire dorsal surface sharply defined from ventral (Hershkovitz, 1977: 621–622). Restricted to the Amazon forests, east of the Andes, east to the rios Madeira and Ji-Parana and Mamoré-Guaporé. Smaller than other tamarins of the genus *Saguinus*. Mean body weights of free-ranging *nigricollis* group tamarins provided by Smith and Jungers (1997) are as follows: *L. nigricollis* males 468 g (N = 8) and females 484 g (N = 6); *L. fuscicollis* males 343 g (N = 69) and females 358 g (N = 55). Soini (1983, 1990) recorded the mean adult body mass of three species: *L. illigeri* males 292 g (N = 9) and females 296 g (N = 4); *L. fuscicollis* males 328 g (N = 9) and females 338 (N = 10); and *L. nigrifrons* males 354 g (N = 51) and females 369 (N = 41). By comparison, mean body weights of free-ranging *S. mystax mystax* provided by Soini and Soini (1990) are as follows: males 501 g (N = 161) and females 530 g (N = 104). *Saginuis l. labiatus* males average 477 g (N = 34) and females 515 g (N = 18) (F. Encarnación in Snowden & Soini, 1988). *Saginuis imperator* males average 474 g (N = 4) and a female weighed 475 g (N = 1). Mean body weight of *S. midas* males was 533 g (N = 3) and a female weighed 450 g (N = 1) (Fleagle & Mittermeier, 1980). Mean body weight of *S. oedipus* males was 418 g (N = 37) and females 404 g (N = 29) (Smith & Jungers, 1997).

White-mouthed tamarins differ from other tamarins regarding strata use, locomotion, and foraging. A number are sympatric with moustached tamarins, forming mixed-species groups. They travel and forage in the lower strata, below the moustached tamarins, and, associated with this, use a higher proportion of leaping between vertical supports in their locomotory repertoire, compared with the moustached tamarins that use more quadrupedal walking and running and leaping on horizontal branches. The white-mouthed tamarins' use of the lower forest strata is independent of sympatry or allopatry with other tamarin taxa.

The *nigricollis* group tamarins forage more for concealed animal prey in specific sites (e.g. knotholes, crevices, bromeliad tanks) than the moustached tamarins, which forage more by foliage gleaning and looking along branches for exposed, camouflaged prey. Associated with their manipulative foraging, white-mouthed tamarins have hands that are longer...
and narrower than those of other tamarins (Bicca-Marques, 1999).

The lineage that led to the *nigricollis* species group diverged from other tamarins 11–8 Ma. The *nigricollis* species group is sister to all other tamarins.

Leontocebus fuscus (Lesson, 1840). Lesson's saddle-back tamarin

Type locality. Colombia: Plaines of Mocoa, Putumayo, between the rios Putumayo and Caquetá.

Leontocebus nigricollis nigricollis (Spix, 1823). Spix's black-mantle tamarin

Leontocebus nigricollis graelssi (Jiménez de la Espada, 1870), Graells' black-mantle tamarin

Type locality. Peru: restricted by Hershkovitz (1977: 629) to right bank Río Napo, opposite Tarija, and above the mouth of the Río Curaray.

Leontocebus nigricollis hernandezi (Hershkovitz, 1982). Hernández-Camacho's black-mantle tamarin

Type locality. Colombia: Río Peneyá, a small tributary of the Río Caquetá, entering from left (north) about 15 km above mouth of the Río Caguán, and about 50 km in a straight line below village of La Tagua, Intendencia de Caquetá, approximately 150 m above sea level.

Leontocebus leucogenys (Gray, 1866). Andean saddle-back tamarin

Type locality. Brazil. The type (British Museum) is a juvenile of unknown origin. Restricted by Hershkovitz (1966a) to the Department of Huánuco, Peru. Fixed by Napier (1976) as Peru, Sarayacu.

Leontocebus illigeri (Pucheran, 1845). Illiger's saddle-back tamarin

Type locality. Colombia: restricted to the Colombian bank of the Río Solimões by Hershkovitz (1949), but altered to the left bank of the lower Río Ucayali near its mouth in Loreto, Peru, by Hershkovitz (1966a: 328).

Leontocebus lagonotus (Jiménez de la Espada, 1870). Red-mantle saddle-back tamarin

Type locality. Peru: Destacamento (~Francisco de Orellana), confluence of the ríos Napo and Amazonas. Forests on the right bank of the Río Napo (Hershkovitz, 1977: 655).

Leontocebus tripartitus (Milne-Edwards, 1878). Golden-mantle saddle-back tamarin

Type locality. Ecuador: Río Napo, Oriente.

Leontocebus fuscicollis fuscicollis (Spix, 1823). Spix's saddle-back tamarin

Midas fuscicollis Spix, J. B. von. 1823. Sim. et Vespert. Brasil., p. 27, fig. 20.

Type locality. Brazil. 'It occurs near the district of São Paulo de Olivença in the forests between the Solimões and Içá. Restricted by Hershkovitz (1977: 645) to the vicinity of São Paulo de Olivença on the south bank of the Río Solimões.

Leontocebus fuscicollis avilapiresi (Hershkovitz, 1966). Ávila Pires' saddle-back tamarin

Type locality. Brazil: mouth of the Lago de Tefé, Río Solimões, Amazonas.

Leontocebus fuscicollis primitivus (Hershkovitz, 1977). Hershkovitz's saddle-back tamarin

Type locality. Brazil: Río Juruá, Amazonas.

Leontocebus fuscicollis mura (Röhe, Silva-Júnior, Sampaio & Rylands, 2009). Gray-fronted saddle-back tamarin

Type locality. Brazil: Campina Tupana, near the Río Tupana, interfluvium of the lowest (northernmost) reaches of the ríos Madeira and Purus, north (left bank) of the Río Tupana, tributary of the Río Madeira; 04°09′26.5″S; 60°07′56.0″W.

Leontocebus nigrifrons (I. Geoffroy Saint-Hilaire, 1850). Geoffroy’s saddle-back tamarin

Hapale nigrifrons Geoffroy Saint-Hilaire, I. 1850.

Type locality. Unknown. Restricted by Hershkovitz (1977: 646) to lower Rio Yavarí, Loreto, Peru.

Leontocebus cruzlimai (Hershkovitz, 1966). Cruz Lima’s saddle-back tamarin

Leontocebus weddelli (Deville, 1849). Weddell’s saddle-back tamarin

Type locality. Bolivia, Apolobamba (=Caupolicán) Province, La Paz (Hershkovitz, 1977: 661).

Leontocebus weddelli melanoleucus (Miranda Ribeiro, 1912). White saddle-back tamarin, White mantled tamarin

Leontocebus weddelli crandalli (Hershkovitz, 1966). Crandall’s saddle-back tamarin

Type locality. Unknown provenance.

GENUS SAGUINUS HOFFMANNSEGG

Synonyms

Leontocebus Wagner, J. A. 1839. *Schreber’s Säuget.* Suppl. 1. 1839: xi [marked v]. Type species designated by Miller (1912; 380) Midas leoninus É. Geoffroy Saint-Hilaire, 1812 [=Simia leonina Humboldt, 1805; =Leontopithecus fuscus Lesson, 1840]. Type species designated by Elliot (1913; 194) Hapale chrysonelas Wied, 1820. Pocock (1917; 255) followed Elliot (1913) in listing chrysonelas as the type species. In part. Elliot (1912) and Cabrera (1957) applied this genus name to all of the tamarins.

Tamarinus Trouessart, E.-L. 1904. *Cat. Mamm.*, Suppl., p. 29. Type species designated by Pocock,
Saginus mystax mystax (Spix, 1823). Spix’s moustached tamarin,

Type locality. Brazil: near São Paulo de Olivença, south bank of Rio Solimões, Amazonas.

Saginus mystax pileatus (I. Geoffroy Saint-Hilaire & Deville, 1848). Red-cap moustached tamarin

Type locality. Brazil: Rio Javari. Near Pebas, Peru. Hershkovitz (1977) informed that it occurs in neither location and restricted it to Lago de Tefé (Ega), near its mouth at the Rio Solimões, Brazil, where collections were made by the Castelnau Expedition.

Saginus mystax pluto (Lönnberg, 1926). Whiterrump moustached tamarin

Type locality. Brazil: Ayapúa [Lago], Rio Purus, Amazonas. Lago Ayapúa is west of the Rio Purus. Hershkovitz (1977) believed that the type locality would in fact have been opposite the Lago Ayapúa, on the right bank of the Rio Purus, due to his conviction that its range was between the rios Purus and Madeira, and as such in sympathy with the red-bellied tamarin (labiatus). Based on the three available specimen localities used by Hershkovitz (1977) to delimit the distribution of this subspecies, Rylands et al. (1993) argued that in fact the more likely range for this very little known tamarin would lie between the rios Purus and Coari, west of the Purus. Tamarinus mystax pileatus occurs west of the Rio Coari to the Rio Tefé.

Saginus labiatus labiatus (É. Geoffroy Saint-Hilaire, 1812). Geoffroy’s red-bellied tamarin

Type locality: ‘Probablement le Brésil’; restricted by Cabrera (1957) to Lago Joanacan [=Lago Janaucá], Amazonas, Brazil; type locality of Midas erythrogaster Reichenbach, 1862. Lago Janaucá is in the supposed range of rufigventer Gray, considered a synonym by Cabrera (1957). The type locality suggested by Hershkovitz (1977: 692) is ‘somewhere between the rios Purus and Madeira, south of the Rio Ipixuna, in the region of griseovertex Goeldi, 1907’. The type of Midas griseovertex was collected during Goeldi Museum expeditions (1903–1904) in the Purus and Acre regions (Goeldi, 1907). de Carvalho (1959: 460) restricted it to upper Rio Purus, Bom Lugar, Amazonas.

Saginus labiatus thomasi (Goeldi, 1907). Thomas’s red-bellied tamarin

Type locality. Brazil: Tonantins, Rio Tonantins, north bank of the Rio Amazonas [=Solimões], below mouth of Rio Icá, Amazonas, Brazil (Hershkovitz, 1977).

Saginus labiatus rufigventer (Gray, 1843). Gray’s red-bellied tamarin

Type locality. Unknown. Gray (1843) informed that it came from Mexico. Oldfield Thomas told Goeldi (1907) that the specimen had been obtained from a dealer. Recognized as valid by Groves (2001), who indicated that it occurred south of the Rio Solimões between the rios Purus and Madeira, below the Rio Ipixuna, based on Hershkovitz’s (1977) description of geographical variation in S. labiatus labiatus. According to Cabrera (1957), the type locality of Midas erythrogaster Reichenbach, 1862, is Lago Janaucá, south of the Rio Solimões, Amazonas, Brazil, and this would be appropriate for this subspecies, presuming that erythrogaster is a synonym. Reichenbach (1862: 14) stated that his Midas erythrogaster is very similar to M. rufigventer.

Saginus imperator imperator (Goeldi, 1907). Black-chinned emperor tamarin

Type locality. Brazil: Upper Rio Purus. Two [co-types] from the Rio Acre and three from the upper Rio Purus. de Carvalho (1959: 460) designated a lectotype from ‘upper Rio Purus, state of Amazonas, in Bom Lugar (or perhaps Monte Verde)’. From a map published by Snethlage (1909), a member of the expedition that resulted in the collection of the types of this species, Hershkovitz (1979) placed Monte Verde on the right bank of the Rio Purus, just above the mouth of the Rio Acre, and Bom Lugar on the right bank the Rio Purus just below the mouth of the Acre, a little north of what is today the town of Boca do Acre. From our understanding of the distributions of S. labiatus labiatus and S. i. imperator today, it is
evident that Monte Verde, not Bom Lugar, should be the type locality for the black-chinned emperor tamarin. Goeldi’s (1907) *Midas griseovertex*, a junior synonym of *S. l. labiatus*, was collected in Bom Lugar (de Carvalho, 1959). As such, Monte Verde should be considered the type locality, and not Bom Lugar.

Saguinus imperator subgrisescens (Lönnberg, 1940). Bearded emperor tamarin
Type locality. Brazil: Santo Antônio, western bank of the Rio Eiru, near its confluence with the upper Rio Juruá, Amazonas.

Saguinus inustus (Schwarz, 1951). Mottled-face tamarin
Type locality. Brazil: Tabocal, between Rio Japurá and Rio Negro, state of Amazonas.

Saguinus niger (E. Geoffroy Saint-Hilaire, 1803). Western black-handed tamarin
Type locality. Said to be from Cayenne, but restricted by Hershkovitz (1977) to Belém do Pará, Pará, the type locality of *ursula* Hoffmannsegg. Hershkovitz considered *ursula* to be a junior synonym. Voss, Lunde, and Simmons (2001) designated a neotype of *niger* from Cametá, western bank of the Rio Tocantins, Pará, Brazil. Gregorin and de Vivo (2013) re-validated *ursulus*.

Saguinus ursulus Hoffmannsegg, 1807. Eastern black-handed tamarin
Type locality. Brazil: Vicinity of Pará (=Belém do Pará), Pará.

Brazilian bare-face tamarins, *Saguinus bicolor* species group

Saguinus bicolor (Spix, 1823). Pied tamarin, pied bare-face tamarin
Type locality. Brazil: near the village of Rio Negro (=Manaus), Barra do Rio Negro, Amazonas.

Saguinus martinsi martinsi (Thomas, 1912). Martins’ bare-face tamarin
Type locality. Brazil: Faro, north side of the Rio Amazonas, near mouth of Rio Nhamundá, Pará.

Saguinus martinsi ochraceus Hershkovitz, 1966. Ochraceous bare-face tamarin
Type locality. Brazil: mouth of Rio Paratucú, a right bank tributary of the Nhamundá, Amazonas.

Colombian and Panamanian bare-face tamarins, *oedipus* species group

Saguinus oedipus (Linnaeus, 1758). Cotton-top tamarin

Saguinus Geoffroyi (Pucheran, 1845). Geoffroy’s tamarin
Type locality. ‘Panamá’. Restricted to the Canal Zone by Hershkovitz (1949: 417).

Saguinus leucopus (Günther, 1877). Silvery-brown bare-face tamarin, white-footed tamarin
Type locality. Colombia: near Medellin, Antioquia.

ACKNOWLEDGEMENTS
We are most grateful to an anonymous reviewer who provided excellent suggestions and significant insights regarding our review of the taxonomy and taxonomic history of these callitrichids. Our sincere thanks to Stephen D. Nash, Conservation
International, for drawing the maps and allowing us to use his illustrations of the tamarins.

REFERENCES

Sherborn CD. 1922–1932. Index animalium sive index nominum quae ab A.D. MDCCCLVII generibus et speciebus animal-

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher’s website:

Table S1. Ecological and behavioural field studies of white-mouthed tamarins.

Table S2. Ecological and behavioural field studies of large-bodied tamarins.