UCLA » College » Life Sciences » Institute for Society and Genetics » News + Views » Uncategorized » Texas A&M Biologists Unlock Non-Coding Half of Human Genome with Novel DNA Sequencing Technique

texas-am-biologists-unlock-non-coding-half-of-human-genome-with-novel-dna-sequencing-technique

Texas A&M Biologists Unlock Non-Coding Half of Human Genome with Novel DNA Sequencing Technique

An obscure swatch of human DNA once thought to be nothing more than biological trash may actually offer a treasure trove of insight into complex genetic-related diseases such as cancer and diabetes, thanks to a novel sequencing technique developed by biologists at Texas A&M University. The game-changing discovery was part of a study led by Texas A&M biology doctoral candidate John C. Aldrich and Dr. Keith A. Maggert, an associate professor in the Department of Biology, to measure variation in heterochromatin. This mysterious, tightly packed section of the vast, non-coding section of the human genome, widely dismissed by geneticists as “junk,” previously was thought by scientists to have no discernable function at all.

Aldrich’s findings, published today in the online edition of the journal PLOS ONE, showed that differences in the heterochromatin exist, confirming that the junk DNA is not stagnant as researchers originally had believed and that mutations which could affect other parts of the genome are capable of occurring. “We know that there is hidden variation there, like disease proclivities or things that are evolutionarily important, but we never knew how to study it,” Maggert said. “We couldn’t even do the simplest things because we didn’t know if there was a little DNA or a lot of it. “This work opens up the other non-coding half of the genome.”

The uncharted genome sequences have been a point of contention in scientific circles for more than a decade, according to Maggert, a Texas A&M faculty member since 2004. It had long been believed that the human genome — the blueprint for humanity, individually and as a whole — would be packed with complex genes with the potential to answer some of the most pressing questions in medical biology.

Read the full article here.

Post a Comment

Your email is never shared. Required fields are marked *

*
*

*